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Abstract

For magnetic confinement fusion in Tokamak plasma, some of the limitations
to particle and energy confinement time are caused by turbulence and colli-
sions between particles, which determine the ”anomalous” and the neoclassical
transport levels respectively. In this work, we focus on the studies of the col-
lision operator and applications to neoclassical physics, such as energy and
particle transport, and the neoclassical bootstrap current. The neoclassical
bootstrap current can drive instabilities in certain cases, hence it is important
to understand when studying turbulence. To study these transport processes
appropriate collision operators and kinetic simulations are needed. We give
a brief review of the kinetic model and the collision operators, with a dis-
cussion on the simplifications and conservation properties. We implemented
the simplified Lorentz collision operator in the TRIMEG code, a TRIangular
MEsh-based Gyrokinetic code that can handle the open field line geometry.
Using TRIMEG code and the newly implemented collision operator, we stud-
ied electron transport and bootstrap current generation with the consideration
of density gradient but uniform temperature for different geometries. We com-
pared the simulation results to theoretical calculations for simplified and realis-
tic geometries. A good agreement between theory and our simulation results is
observed for the large aspect ratio case in particle/energy fluxes and bootstrap
current. Meanwhile, discrepancies are also observed for the moderate aspect
ratio case and the ASDEX-Upgrade case, due to the different treatments and
approximations in theory and simulation. The capability of the particle sim-
ulation in TRIMEG code has been demonstrated for the studies of electron
transport and bootstrap current generation.



Chapter 1

Introduction

1.1 Motivation

The main motivation for the current work is fusion research. The aim of the
field is to reach stable conditions for fusion processes to be possible and har-
ness the resulting energy. For two protons to fuse it is required to overcome
the Coulomb repulsion until the short-range nuclear forces take over. For
this, they must have enough kinetic energy at which point they are in the
plasma state. For a reactor to function, the thermonuclear power produced
by the fusion reactions must be larger than the power loss. The condition
when the fusion process is self-sustaining is called the ignition condition, and
is a function of density, temperature, and the confinement time [33]. To sat-
isfy these requirements a device called Tokamak has advanced the most as a
plasma confinement device. It has a toroidal configuration that ensures that
the magnetic field lines don’t exit the volume, and hence there are no end
losses. As particle trajectories to the lowest order follow the field lines, this
should ensure good confinement of the plasma. However, after decades of re-
search, scientists found numerous processes that deteriorate confinement [34].
Due to the toroidal shape of the device, there are transport processes that
lead to the transport of the particles outside of the confinement device, this is
called neoclassical transport. Furthermore, there are also transport processes
that happen due to turbulence, called anomalous transport. The neoclassi-
cal transport in certain cases can be analytically calculated. In this work, we
study the neoclassical physics of electrons by taking into account the collisional
processes in toroidal geometry. In addition, we compare analytical solutions
to our simulation results and benchmark the simulation code.
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1.2 Plasma Physics 3

1.2 Plasma Physics

1.2.1 Plasma Properties

Plasma is an ionized gas, which has specific properties due to a large number
of charged particles [33]. If we consider a small charge separation such as
sheets of electron and ions in the plasma with length of l between them, and
a density of n, the electromagnetic force per area will be F ∝ (lne)2/ϵ0. If we
consider the approximate values for a Tokamak in 1cm3 lengths, n ∝ 1020m−2

and F ∝ 109Nm−2, which is a huge force. Hence, on macroscopic scales in the
plasma

ne =
∑
i

niZi, (1.1)

where, ne, ni are the electron and ion densities respectively, and Zi is the ion
charge number. This condition is called quasi-neutrality. However, if we move
to small scales, at a specific length λD, called the Debye length and given
by

λD =

√
ϵ0T

ne2
, (1.2)

charge separation can happen due to the thermal energy of the particles being
the same scale as the electromagnetic force F ∝ nT . This is also the scale to
which a stationary ion’s electric field in the plasma would extend, until being
significantly shielded by the electron response. Furthermore, we approximate
that the average potential energy is smaller than the kinetic energy, and we
arrive to the condition that the number of particles in the Debye length should
be sufficiently large, this quantity is also called the plasma parameter Λ and
is given by [33]

Λ ≡ nλ3D ≫ 1. (1.3)

If we consider the time scales on which the plasma reacts to charge density
perturbations, we can write the equation of motion for particles in the electric
field, and using the continuity equation arrive at the plasma oscillations. This
describes the time scale of charge separation, also called the plasma frequency.
The plasma frequency generally refers to the electron plasma frequency, as it
is significantly larger for electrons than ions. It is given by

ωp(q) =

√
nq2

ϵ0mq

. (1.4)

These oscillations are the fundamental timescale for plasma physics. For these
to be visible in our system the oscillation frequencies of external effects need
to be less than the plasma frequency. In addition, the following constraints
are placed on these parameters:

λD ≪ Observation length scales
2π

ωp
≪ Observation timescales. (1.5)
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1.2.2 Particle Motion

We consider the motion of a charged particle in an electromagnetic field, with
only magnetic and electric forces. The general equation of motion comes from
the Lorentz force: [8]

ma⃗ = q
(
E⃗(x⃗, t) + v⃗ × B⃗(x⃗, t)

)
. (1.6)

We start by only considering a static magnetic field B⃗ = Bb̂ = B0ẑ, and no
electric field. The force on the particle is perpendicular to the motion, hence
the particle will move in a circle perpendicular to the field as shown in Figure
1.1, with the frequency

Ω =
qB0

m
, (1.7)

also called the gyro-frequency, and the gyro-radius

ρ =
mv⊥
qB0

. (1.8)

These quantities provide time scales and length scales, which describe mag-
netized plasma. While deriving the equations of motion, we will assume that
our space and time scales are much larger than the gyro-radius and the gyro-
frequency. In the cases of interest here, the plasmas are magnetized and it is
useful to separate the gyration from the movement of the gyro-center:

x⃗ = x⃗gc +
mb̂× v⃗

qB
(1.9)

where we define B in the position of the gyro-center. Now we can investigate
the motion of the x⃗gc. We can write the following:

˙⃗xgc = v⃗gc = v⃗ − mb̂

qB
× a⃗ (1.10)

We can replace a⃗ using the Lorentz force, and assume that E is constant, we
get the following result:

v⃗gc = v⃗∥ +
E⃗ × B⃗

B2
= v⃗∥ + v⃗E×B. (1.11)

The term v⃗E×B is called the E cross B drift, and it is also described in Figure
1.1. For an arbitrary force in the equation of motion, e.g. gravity F = mg,
the additional drift term in the velocity of the gyro-center would be

v⃗F =
F⃗ × B⃗

qB2
. (1.12)

Now if the magnetic field is static but not uniform, the radius is not constant
during the gyration which causes changes to the overall guiding center drift.
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Figure 1.1: Motion of a particle in only static Magnetic field (left) and with

additional Electric field (right). Taken from [8].

To describe this motion in a simple way, it is useful to expand the equation
of motion to 1st order in ϵ = ρ/L and plug in the 0th order solution, where
L ≡ 1/|∇ lnB|. The 0th order solution is

m
dv0
dt

= qv⃗0 × B⃗gc. (1.13)

For the 1st order equation, we take into account the B⃗-field variation:

B⃗ = Bgc −
m

qBgc

(
(v⃗0 × b̂) · ∇

)
B⃗gc (1.14)

and time-average the equation of motion over many gyro periods. In addition,
we have assumed there is no electric field and we finally arrive to the following
drift equations (more detailed derivation in [8]):

v⃗d =
mv2⊥b̂×∇B

2qB2
+
mv2∥
qB

b̂× (b̂ · ∇)b̂ (1.15)

where the first term is called the gradient B drift v∇B and is caused by the
gyro-radius being smaller in the high field region and is visualized in Figure
1.2. The second term is called the curvature drift v⃗c, and this is caused by
the curvature of the magnetic field, which imposes a centripetal acceleration
and results in a drift perpendicular to the curvature and the initial velocity,
as shown in Figure 1.2.

Now if we also consider that the electric field is varying in time but restrict
our calculations to the case where the variation timescale is much larger than
the gyro-period, we can calculate the additional drift term appearing in the
gyro-center equation of motion, which is the second order in ϵ [8]:

vp =
m

qB2

dE⃗⊥

dt
, (1.16)

which is also called polarization drift.
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Finally, we consider the changes in particle motion due to a time-varying B
field, which modifies the particle’s parallel and perpendicular velocity in such
a way that the adiabatic invariant - magnetic moment is conserved, as is de-
scribed in detail in the following reference [8]. Here we restrict our discussion
to slow time variations compared to the gyrofrequency. We observe that due
to Faraday’s law, a curl to the electric field is generated, which then acceler-
ates the particle perpendicular to the magnetic field. In this case, it can be
readily proven that a quantity µ is conserved given that the magnetic field
is slowly varying. This quantity µ is called the magnetic moment defined as
follows

µ =
v2⊥
2B

. (1.17)

Figure 1.2: Drift due to the gradient of a magnetic field (left), and description of

the curvature force on the particle due to curved magnetic field lines (right). Taken

from [8].

1.3 Kinetic description

In general, when we study plasma physics, we have to consider the interaction
of numerous particles. There are two frameworks used for this: the fluid model
and the kinetic model. The fluid model describes the plasma in terms of low-
order moments of the particle distribution function, this is appropriate when
the response to perturbations is nearly identical for all particles at a given
location, which is a valid assumption in certain cases. Thus, it describes the
plasma using a few variables such as the density, the kinetic temperature, and
the flow velocity. However, when the effects caused by the particle velocity
differences are important, such as resonance caused by wave-particle interac-
tions, it is important to use the kinetic model, which describes the plasma as
a distribution function in the (x⃗, v⃗) space, the so-called phase space [10]. A
”microscopic” distribution function F can be expressed as

F =
N∑
i=1

δ(x⃗− x⃗i(t))δ(v⃗ − v⃗i(t)). (1.18)
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The particle number density per infinitesimal volume around x⃗ is

n(x⃗, t) =

∫
d3vF(x⃗, v⃗, t). (1.19)

We can also write the charge density and current density using this formula-
tion:

ρ = e

∫
d3vF(x⃗, v⃗, t), (1.20)

J⃗ = e

∫
d3vv⃗F(x⃗, v⃗, t). (1.21)

The phase space volume is conserved as shown in Figure 1.3, which can also be
interpreted as the particle number conservation. Therefore, we can write

∂F
∂t

+ v⃗ · ∇F + a⃗ · ∂F
∂v⃗

= 0, (1.22)

where a⃗ satisfies
ma⃗ = e(E⃗ + v⃗ × B⃗). (1.23)

This equation is exact, however, it involves delta functions and instantaneous

Figure 1.3: Evolution in time from A to B for 1-dimensional phase space distri-

bution. Taken from [8].

changes, therefore solving it is as hard as solving a many-body problem. To
simplify this problem, we consider an ensemble average of this distribution
function which we call f and this is now a smooth function

f ≡ F̄ = ⟨F⟩ensemble. (1.24)

However, when writing the ensemble average of the acceleration, we have to
consider that it depends on the trajectories of the particles, and it can not be
simply written as

⟨⃗a · ∇∂F
∂v⃗

⟩ensemble ̸= ¯⃗a · ∂f
∂v⃗
. (1.25)
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The reason is that we have to consider the correlations between (numerous
species of) particles, which is in general expressed by a complex function C(fsi).
These correlations are mostly due to close encounters between them, hence
C(fsi) is called the collision operator and can be expressed as follows

C(fsi) = ¯⃗a · ∂f
∂v⃗

− ⟨⃗a · ∂F
∂v⃗

⟩ensemble. (1.26)

The kinetic theory analyzes this correlation with different approximations de-
pending on the needs of the model at hand. Finally, the ensemble-averaged
kinetic equation, also called the Vlasov-Maxwell equation is

∂f

∂t
+ v⃗ · ∇f + a⃗ · ∂f

∂v⃗
= C(fsi), (1.27)

where we have suppressed the bar over a⃗.

1.3.1 Collision operator

The collisional effects can be compared to the Brownian motion. Due to the
sparse distribution of particles in space for most plasmas of our interest, we can
assume that two-body collisions are dominant and are affected by the many-
body physics such as Debye shielding, which make the effective interaction
range finite [10]. Therefore, if we have multiple species of particles, the collision
operator for species s can be written as the summation of the collision operators
between all species of particles

Cs =
∑
s′

Css′ . (1.28)

We will consider collision operators that guarantee particle, energy, and mo-
mentum conservation, which can be written as∫

d3vCss = 0, (1.29)

∫
d3vmsv⃗Css′ = −

∫
d3vms′ v⃗Cs′s, (1.30)∫

d3v
1

2
msv

2Css′ =

∫
d3v

1

2
ms′v

2Cs′s. (1.31)

When we consider the case with large plasma parameters Λ ≫ 1, we can
assume that each particle is affected simultaneously by the field of many sur-
rounding particles. Due to the long range of shielded interaction, small-angle
collisions will be dominant. Hence, we can treat the particle motion as a ran-
dom walk where mild changes accumulate. This approximation is known as
the Fokker-Planck approximation. We can now define a correlation time tc,
and after this, the behavior can be considered a random walk. Hence, if we
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consider changes in time ∆t much larger than the correlation time, we can de-
fine a probability P (v⃗,∆v⃗,∆t) that particle with current velocity v⃗ will have
a change of the magnitude ∆v⃗. Then any distribution function can be written
as

f(v⃗, t) =

∫
d3d∆vf(v⃗ −∆v⃗, t−∆t)P (v⃗ −∆v⃗,∆v⃗,∆t). (1.32)

As the probability quickly decreases for high values of ∆v⃗, we can expand in
powers of |∆v⃗|, and take averages ⟨...⟩ relative to P and we get the general
form of Fokker-Planck collision operator [10]

C(f) = − ∂

∂v⃗
· (⟨∆v⃗⟩

∆t
f) +

1

2

∂2

∂v⃗∂v⃗
:

(
⟨∆v⃗∆v⃗⟩

∆t
f

)
. (1.33)

This can also be rewritten as

C(f) = − 1

m

∂

∂v⃗
· (R⃗fs) +

∂

∂v⃗
· D⃗(f) · ∂f

∂v⃗
, (1.34)

with the second-rank diffusion tensor

D⃗ =
1

2

⟨∆v⃗∆v⃗⟩
∆t

, (1.35)

and the velocity-dependent dynamical friction term

R⃗ = m
⟨∆v⃗⟩
∆t

+m
∂

∂v⃗
· D⃗. (1.36)

Taking into account that this operator describes collisions between two species,
this can also be rewritten as

C(fss′) = − 1

ms

∂

∂v⃗
· (R⃗ss′(fs′)fs) +

∂

∂v⃗
· D⃗ss′(fs′) ·

∂fs
∂v⃗

. (1.37)

Evaluation of R⃗ and D⃗ can be done using Newton’s law in the screened poten-
tial field [27]. Using this we can write the diffusion tensor and the dynamical
friction as integrals of the distribution function [10]

Dss′αβ =
γss′

m2
s

∂Gs′

∂vα∂vβ
, (1.38)

Rss′α =
2γss′

m2
s

∂Hs′

∂vα
, (1.39)

where G and H are called the Rosenbluth potentials and are given by

Gs′(v⃗) ≡
∫
d3v′f ′

s′|v⃗ − v⃗′|, (1.40)

Hs′(v⃗) ≡
∫
d3v′f ′

s′|v⃗ − v⃗′|−1. (1.41)
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The constant γ is

γss′ =
e2s′e

2
s log Λc
8πϵ20

, (1.42)

where ϵ0 is the electric constant, and log Λc is the Coulomb logarithm which is
generally treated as a constant and depends on the ambient temperatures of
the species [7]. This very general collision operator is an integral-differential
function that is very complicated to solve and model, hence we use a simpli-
fied model from previous work [35, 21] by assuming a small deviation from
the equilibrium Maxwellian distribution and linearizing the operator. This
operator is

C(δfa) = P (fM , δfb) +
∂

∂v
· (vFδfa)

+
1

2

∂2

∂v∂v
: [G(Iv2 − vv) +Hvv]δfa , (1.43)

with P corresponding to the energy and momentum conservation and F , G,
and H functions defined as

F =

(
1 +

ma

mb

)
ϕ(x)ν0 , (1.44)

G =

[(
1− 1

2x

)
ϕ(x) +

dϕ(x)

dx

]
ν0 , (1.45)

H =
1

x
ϕ(x)ν0 . (1.46)

Here x = v2/v2th,b and ϕ(x) is the Maxwellian integral defined by

ϕ(x) =
2√
π

∫ x

0

e−t
√
tdt , (1.47)

and basic collision frequency ν0 is

ν0,αβ =
4πnβe

2
αe

2
β log Λαβ

m2
αv

3
. (1.48)

Additionally, when considering collisions between ions and electrons, the dif-
ference in mass between the species is large, and thus, we can neglect the mass
of the electron to get the following collision operator, which is accurate to first
order in (1/x), consisting of pitch angle scattering and energy diffusion terms,

Cei(δfe) = ν0
1

2

∂

∂ξ
(1− ξ2)

∂

∂ξ
+ ν0v

∂

∂v

(
me

mi

δfe +
v2th,i
2v

∂

∂v
δfe

)
, (1.49)

where ξ = v∥/v is called the pitch. If we treat the heavy species as infinitely
massive, with negligible thermal velocity the collision operator becomes much
simpler and we get the Lorentz collision operator [10]

Cei(δfe) = ν0
1

2

∂

∂ξ
(1− ξ2)

∂

∂ξ
. (1.50)
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Equation 1.50 is the collision operator we implemented in TRIMEG code for
the neoclassical studies of electron transport and bootstrap current in this
work.

1.3.2 Classical transport

We now discuss the diffusion of particles due to collisions in a straight magnetic
field configuration. Then

Γr = −D∂n
∂r
, (1.51)

where Γr is the particle flux in the perpendicular direction to the magnetic
field, and D is the diffusion coefficient. For two-particle collisions, consider-
ing the change in the gyro-center due to the collisions ∆rgc, and momentum
conservation [30], we arrive at the following equation for each species j∑

j

ej∆rj = 0. (1.52)

This equation tells us that for like-species collisions, there is no net diffusion,
and for inter-species collisions, the diffusion rate is the same for both ions
and electrons. The estimate of the Diffusion coefficient for electrons by the
random-walk argument is

Dclass =
(∆x)2

∆t
, (1.53)

where ∆x is the step length which we can assume to be equal to the gyro-
radius ρe, and ∆t is the time between collisions, which can be assumed to be
proportional to the time between collisions of ions and electrons - 1/νei. This
heuristic estimation also agrees with more thorough derivations [30], and we
can write the classical diffusion coefficient as

Dclass ∝ ρ2eνei. (1.54)

In the toroidal geometry of tokamak plasmas, the estimate of ∆t and ∆x is
different, which leads to different diffusion coefficients, as we will discuss in
the following chapter.



Chapter 2

Gyrokinetic model and particle
simulations

2.1 Tokamak geometry and guiding center equa-

tions

A simple configuration for magnetic confinement, where the magnetic field
lines form nested surfaces, is a torus. A tokamak is a toroidal chamber, where
the primary field is the toroidal magnetic field, which is produced by poloidal
currents in external coils. Additionally, there is a smaller poloidal magnetic
field produced by the toroidal current in the plasma. Furthermore, there are
also other, smaller contributions to the B⃗-fields due to coils used for plasma
shaping, and poloidal currents in the plasma. The basic configuration is shown
in Figure 2.1.

Figure 2.1: Magnetic fields and currents in a tokamak. Taken from [20].

12
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2.1.1 Tokamak coordinates

When describing the tokamak, we assume that it is axisymmetric, and some
of the coordinate systems we can use are either (R,Z, φ) or (r, θ, φ). They are
shown in Figure 2.2.

Figure 2.2: Tokamak (r, θ, φ) coordinates, where R0 is called the major radius,

and a is the minor radius. Taken from [6].

In the Cartesian coordinate system (X, Y, Z), the coordinates (R,Z, φ) are
defined as follows,

R2 = X2 + Y 2, (2.1)

tanφ = Y/X, (2.2)

Z = Z, (2.3)

J(R,φ,Z) = −R. (2.4)

Here J represents the Jacobian. We can also write the following descriptions
for the (r, θ, φ) coordinate system

R = R0 + r cos θ, (2.5)

Z = r sin θ, (2.6)

J(r,θ,φ) = −rR. (2.7)

In addition to these two coordinate systems, it is also helpful to describe the
tokamak using the flux coordinates (ψ, θ, φ), shown in Figure 2.3. Here, the
coordinate ψ is the magnetic field surface coordinate, and is linked to the
magnetic field as follows,

B⃗ · ∇ψ = 0, (2.8)

BR = − 1

R

∂ψ

∂Z
, (2.9)

BZ =
1

R

∂ψ

∂R
. (2.10)
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At the axis, ψ = 0 by definition and is increasing outward. For this coordinate
system, the Jacobian is

J−1
ψ,θ,φ = ∇ψ · (∇θ ×∇φ). (2.11)

Additionally, when analyzing an arbitrary function F , we sometimes want to
calculate the flux surface average of that function ⟨F ⟩, which is defined as
[12]

⟨F ⟩ = dψ

dV

∫
ds

|∇ψ|
F. (2.12)

Figure 2.3: Tokamak flux coordinates. Taken from [34].

2.1.2 Equilibrium

To derive the equilibrium condition of the plasma, it is appropriate to use
the Magnetohydrodynamic (MHD) description. This description treats the
plasma as a hydrodynamic fluid that is affected by the electric and magnetic
fields, with additional quasi neutrality and small Larmor radius approxima-
tions [8]. Assuming ne ≈ ni, and the vacuum permeability µ0 = 1, the plasma
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is described with the following equations:

ρ ≈ nmi, (2.13)

u⃗ ≈ u⃗i +
me

mi

u⃗e, (2.14)

j⃗ ≈ nee(u⃗i − u⃗e), (2.15)

∂ρ

∂t
+∇(ρu⃗) = 0, (2.16)

E⃗ + u⃗× B⃗ = ηj⃗, (2.17)

ρ
∂u⃗

∂t
= −∇p+ j⃗ × B⃗, (2.18)

∇× B⃗ = j⃗, (2.19)

∇× E⃗ = −∂B⃗
∂t
, (2.20)

∇ · B⃗ = 0. (2.21)

Additionally, the pressure is assumed to be isotropic and defined as the sum
of the momentum flux of both species. To have a complete set of equations,
we also need to specify the time evolution of pressure, which can be defined
as

d

dt

(
p

ργ

)
= 0, (2.22)

where γ is the heat capacity ratio from thermodynamics. From these equations,
we see that the condition for a static equilibrium can be expressed as

∇p = j⃗ × B⃗. (2.23)

In addition, from Equation 2.23, we can also obtain

B⃗ · ∇p = j⃗ · ∇p = 0, (2.24)

which shows that magnetic field lines and current lie on surfaces of constant
pressure-flux surfaces. A general representation of an axisymmetric magnetic
field, which also satisfies ∇ · B⃗ = 0 is

B⃗ = Bφ +Bpol = F (ψ)∇φ+∇ψ ×∇φ, (2.25)

where F (ψ) is the poloidal flux function [31]. If we plug this representation
into the equilibrium Equation 2.23, and use Ampère’s law, we arrive at the
Grad-Shafranov equation:

R
∂

∂R

(
1

R

∂ψ

∂R

)
+
∂2ψ

∂Z2
= −F (ψ)dF

dψ
−R2µ0

dp

dψ
. (2.26)

For given F (ψ) and p(ψ) profiles this equation gives us the ψ(R,Z) [31]. We
can also define a new parameter q(ψ), called the safety factor

q =
∆ϕ

2π
=

1

2π

∮
1

R

Bφ

Bp

ds, (2.27)
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where ∆ϕ is the increment of the toroidal angle following the magnetic field
line corresponding to 2π increment in the poloidal direction, and s is the arc
length in the poloidal direction. In general, the higher its value, the more stable
is the configuration [33]. An approximation to the Grad-Shafranov equation
is the ad hoc equilibrium, here we assume ψ = ψ(r), dψ/dr = rB0/q̄(r),
and F = RBφ = R0B0. We assume axisymmetric magnetic surfaces, which
are circular and concentric in poloidal cross-sections. The equation for the
magnetic field now becomes

B⃗ =
B0R0

R

(
êφ +

r

R0q̄(r)
êθ

)
, (2.28)

where vectors with a hat are the unit vectors. The q̄ is called the pseudo-safety
factor, which can be defined as a quadratic function

q̄ = q̄0 + (q̄edge − q̄0)
r2

a2
, (2.29)

where a is the minor radius. It is related to q as

q̄(r) =
√
1− ϵ2q(r), (2.30)

where ϵ = r/R0 [31].

2.1.3 Guiding center equations

The guiding center equations of motion can be derived from the Lagrangian
formalism [23] by starting with the Lagrangian for a charged particle in an
electromagnetic field

L = [A⃗(v⃗, R⃗) + v⃗] · ˙⃗
R−H(v⃗, R⃗), (2.31)

where B⃗ = ∇ × A⃗ and H = v⃗2/2 + Φ(R⃗, t). By separating the motion along
the field line and the perpendicular motion, we can formulate the Lagrangian
in terms of the guiding center coordinates. Furthermore, we assume that the
Larmor radius and gyration period are much smaller than all the space and
time variations in our system. Expanding in the small parameter of Larmor
radius, and averaging over gyro-motion time scale, we arrive at the Lagrangian
for the guiding center in second-order [34]

L = (A⃗+
Zeρ∥B⃗

m
) · v⃗ + µξ̇ −H, (2.32)

where v⃗ is the guiding center velocity, ρ∥ = mv∥/(ZeB), µ is the magnetic

moment redefined as µ = v⊥
2/(2B), ξ is the gyro-phase and ξ̇ is constant. If

we insert the definition of the magnetic field in terms of flux functions given
in Equation 2.25, we get the Lagrangian in our choice of coordinate system.
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Using Lagrange’s equations and our choice of coordinates, we find the guiding
center equations in the axisymmetric configuration are [34, 24]

˙⃗
R =

1

ZeB⃗ · (B⃗ + ρ∥∇× B⃗)

(
Z2e2B2ρ∥

m

(
B⃗ + ρ∥∇× B⃗

)
+ B⃗ ×∇H

)
,

(2.33)

ρ̇∥ = − 1

ZeB⃗ · (B⃗ + ρ∥∇× B⃗)

(
B⃗ + ρ∥∇× B⃗

)
· ∇H. (2.34)

Equations 2.33–2.34 or their simplified/generalized forms have been imple-
mented in various gyrokinetic codes such as , XGC [4], GTS [32], and TRIMEG
[24, 25].

2.2 Neoclassical transport in tokamak plasmas

2.2.1 Basic features of the neoclassical transport

One key ingredient of neoclassical transport is geometry. Due to the shape
of the torus, the ∇B and curvature drifts make the particles drift vertically
upwards/downwards. In order to prevent the particles from escaping, the
poloidal field is applied, which makes the particles move in circular orbits in
the poloidal plane in addition to the toroidal motion. We can estimate the
diffusion coefficient, by taking into account that during parallel motion par-
ticles have additional drift velocity contribution. Assuming that the average
distance for particles traveling in the toroidal direction is Rq, and νei is the col-
lision frequency that electrons are scattered by ions, the neoclassical diffusion
coefficient for electrons can be estimated as (the Pfirsch-Schlüter coefficient)
[30]

DPS ∝ νeiρ
2
eq

2. (2.35)

In general, the average q is larger than 1, hence the neoclassical diffusion is
larger than the classical diffusion for which Dcl ∝ νeiρ

2
e. Note that in experi-

ments the diffusion coefficients can be still much larger than the neoclassical
diffusion, due to turbulence-induced anomalous transport [33]. The neoclassi-
cal transport is the minimum level of the net transport, if the turbulence can be
mitigated. In this work, we focus on the neoclassical electron transport.

2.2.2 Particle orbits and banana, plateau, and collisional
transport regimes

In the Tokamak due to the spatially changing magnetic field, the magnetic
mirror effect confines the orbits of certain particles, given that∣∣∣∣ v∥v⊥

∣∣∣∣ ≤ √
2ϵ, (2.36)
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where ϵ = r/R0 is the inverse aspect ratio. These particles are called trapped,
and their orbits are shown in Figure 2.4. This can also be shown from the
equation of motion considering how symmetries in |B⃗| simplify particle orbits
[34]. We can also estimate the frequency for these banana orbits called the

Figure 2.4: Banana orbits of trapped particles. Taken from [33].

bounce frequency [30]

ωB ∝ ϵ
vth
qR

. (2.37)

Furthermore, we can estimate the fraction of trapped particles by writing the
condition for trapping. Assuming that the velocity distribution is isotropic,
we find

Trapped Particles

Passing Particles
= ft ∝

√
1− B

Bmax
=
√
ϵ(1 + cos θ). (2.38)

If we integrate over a flux surface, we find that due to the dependence on
ϵ, the number of trapped particles increases radially. Furthermore, due to
the distribution of trapped particles in velocity space, the effective Lorentz
collision frequency, which is just scattering through a velocity space pitch
angle, is actually higher than for passing particles [30]

νeff,j ∝
νj
ϵ
. (2.39)

Now using the random walk argument we can estimate the trapped particle
diffusion, which is actually different from the passing

Dbanana = ft
(∆x)2

∆t
=
νeiρ

2
i q

2

ϵ3/2
. (2.40)

However, for this to be valid the trapped particles must be able to complete
their orbits, therefore the effective collision frequency must be much smaller
than the bounce frequency

νeff,e
ωB

= ν∗ =
νeiqR0

vth,eϵ3/2
≪ 1. (2.41)
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Furthermore, depending on the collision frequency there can actually be three
regimes for the diffusion. If the collision frequency is high and the passing
particles also collide before making poloidal orbits, this is called the Pfirsch-
Schlüter or the collisional regime and the condition for this is

ν∗ ≫ ϵ−3/2. (2.42)

In the middle, we have the plateau regime, due to the fact that at the end of
the banana regime and the beginning of the collisional regime, the diffusion
coefficients coincide, as described in Figure 2.5.

Figure 2.5: The different diffusion regimes, where the dashed line represents the

asymptotic values for respective regimes. Taken from [12].

2.2.3 Bootstrap current

Due to collisional effects in banana orbits and the toroidal effect, a net toroidal
current is produced. If we look at a single flux surface, in the presence of a
finite radial density gradient, there is an asymmetry in density for particles
co-moving with respect to the magnetic field and counter-moving, as shown in
Figure 2.6. Therefore, due to collisions, there are passing particles migrating
in velocity space and eventually forming the neoclassical equilibrium of the
distribution function, featured by a shifted average parallel velocity. Thus, due
to the density gradient in the radial direction, a net current can be produced
in the toroidal direction. More generally, the temperature gradient can also
generate the toroidal current, as we will discuss in Section 2.2.4. Considering
two banana orbits, that have opposite velocities at θ = 0, the density difference
between the inner and outer banana orbits would be δn = (dn/dr)Wb/2, where
Wb is the width of the banana orbit given by Wb =

√
R/rqρ. Assuming that

the average velocity of the trapped particles is ρ/2 and the pressure p = nρ2/2,
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the formula for the bootstrap current can be written as

jbs = −
√
r

R

1

Bθ

∂p

∂r
. (2.43)

This current is sustained by radial outward flow of particles from more densely
populated inner bananas to outer bananas [34]. This formula is independent
of collisions and only assumes collisional relaxation of the particles for the
current generation, however the number of trapped particles able to execute
a full orbit also depends on the collision frequency, which will be taken into
account in further discussions.

Figure 2.6: Particle density vs pitch defined here as λ = v∥/v. The particles that

have pitch within −
√
r/R < λ <

√
r/R are trapped. δn = (dn/dr)Wb/2, where Wb

is the width of the banana orbit. Taken from [34].

2.2.4 Kinetic theory of neoclassical transport

While the intuitive pictures of neoclassical transport and bootstrap current are
given in Sections 2.2.1, 2.2.2 and 2.2.3, a comprehensive description has been
summarized by making use of the kinetic theory [12, 2]. We can also derive a
more thorough analysis of neoclassical transport starting from the drift-kinetic
equation [12]

∂f

∂t
+ (v⃗∥ + v⃗d) · ∇f +

e

m

[
∂ ⟨Φ⟩
∂t

+ v∥E∥

]
∂f

ε̄
= C(f, f), (2.44)

where ε̄ = ε + (e/m)(⟨Φ⟩ − Φ), ε = mv2/2, and Φ is the electrostatic po-
tential, while ⟨...⟩ signifies flux surface average. The basis for simplification
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is to expand this equation in powers of ρp, the poloidal gyro-radius. Further
discussion closely follows the derivation from Hinton in 1976 [12]. After an-
alyzing the ordering, expanding for each term in the equation, and assuming
the Lorentz collision operator, the following equations are obtained to the first
order for electrons and ions respectively

v⃗∥ · ∇fe1 − Cefe1 = Iv∥ · ∇(v∥/|Ωe|)
∂fe0
∂ψ

− (e/Te)v∥E∥fe0, (2.45)

v⃗∥ · ∇fi1 − Ciifi1 = −Iv⃗∥ · ∇(v∥/|Ωi|)
∂fi0
∂ψ

+v∥(ni0ZieE∥ + F∥i)
fi0
pi0
, (2.46)

where f0 is the zeroth order solution assumed to be Maxwellian, I ≡ |Jψ,θ,φ|∇ψ×
∇θ · B⃗, F∥ is the parallel friction force, and Ω is the gyro-frequency. Further-
more, Ce ≡ Cee + Cei, and all the collision operators are linearized assuming
that the distribution functions are nearly Maxwellian and gyro-phase-averaged.
To simplify these equations, the functions He and Hi are introduced as fol-
lows

fe1 =
2v∥ui∥
v2th,e

fe0 − (e/Te)fe0

∫ lp

0

dlp
Bp

[BE∥ −B2
〈
E∥B

〉
/
〈
B2
〉
]

+v∥fseB
〈
E∥B

〉
/
〈
B2
〉
+He (2.47)

fi1 = −
v∥h

Ωip

[
∂ ln pi
∂ρ

+
Zie

Ti

∂ ⟨Φ⟩
∂ρ

]
fi0

+(Zie/Ti)fi0

∫ lp

0

dlp
Bp

[BE∗ −B2 ⟨E∗B⟩ /
〈
B2
〉
] +Hi, (2.48)

with E∗ ≡ E∥ − F∥i/ni0Zie, and the integration path lp is tangent to poloidal
projection of the field line on a plane of constant φ. Using this definition we
can write the equations that He and Hi satisfy and simplify them by splitting
He and Hi into four and two parts, respectively, as functions of gn

He =
4∑

n=1

gneAne, Hi =
2∑

n=1

gniAni. (2.49)

Hence, the transport problem is now reduced to calculating gne and gni. There-
fore, we’re left with the form

v⃗∥ · ∇He − CeHe = −
4∑

n=1

αnAnefe0 (2.50)

v⃗∥ · ∇Hi − CiiHi = −
4∑

n=1

βnAnifi0 (2.51)

where Ani and Ane are general forces arising from the effective electric field, the
density and temperature gradients, while αn and βn are functions of velocities
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and geometry/equilibrium variables. The exact definitions for the coefficients
can be found in equations (5.53)-(5.59) in the reference [12].

The analytical expressions can be obtained using the solutions Hi and He for
the electron flux Γe, the electron and ion heat flux qe, qi, and average parallel
current density J∥ which are defined as

Γe ≡
〈∫

d3vv⃗de · ∇ρHe

〉
=

〈∫
d3α1He

〉
, (2.52)

qe/Te ≡
〈∫

d3vv⃗de · ∇ρ(v2/v2the − 5/2)He

〉
=

〈∫
d3vα2He

〉
, (2.53)

qi/Ti ≡
〈∫

d3vv⃗di · ∇ρ(v2/v2thi − 5/2)Hi

〉
=

〈∫
d3vβ2Hi

〉
, (2.54)

1

Te

〈
(J∥ − J∥s)/h

〉
≡
〈∫

d3vα3He

〉
, (2.55)

where J∥s ≡ σ∥B
〈
E∥B

〉
/ ⟨B2⟩ is the Spitzer current density. The Equations

2.52-2.55 can be rewritten as

Γe =
4∑

n=1

(α1, gne)Ane, (2.56)

qe/Te =
4∑

n=1

(α2, gne)Ane, (2.57)

qi/Ti =
2∑

n=1

(β2, gni)Ani, (2.58)

1

Te

〈
(J∥ − J∥s)/h

〉
=

4∑
n=1

(α3, gne)Ane, (2.59)

where terms (βn, g2n) are the inner products defined as

(βn, gmi) ≡
〈∫

dv3βngmi

〉
. (2.60)

Finally, the analytical solutions can be written using dimensionless electron
transport coefficients Kmn which are related to the inner products and a de-
tailed definition can be found in equations [6.114-6.119] in [12], and assuming
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weak-coupling between electrons and ions:

Γe = −neϵ1/2(ρ2θ/τe)
(
K11A

′
1e +K12

∂

∂r
lnTe

)
(2.61)

−K13neϵ
1/2c

〈
E∥/h

〉
/Bpo, (2.62)

qe +
5

2
TeΓe = −neTeϵ1/2(ρ2eθ/τe)

(
K12A

′
1e +K22

∂

∂r
lnTe

)
(2.63)

−K23neTeϵ
1/2c

〈
E∥/h

〉
/Bpo, (2.64)〈

(J∥ − J∥s)/h
〉

= −neTeϵ1/2(c/Bpo)

(
K13A

′
1e +K23

∂

∂r
lnTe

)
(2.65)

−K33ϵ
1/2σ∥

〈
E∥/h

〉
, (2.66)

where ϵ = r/R0, ρ
2
eθ = 2meTec

2/e2B2
po, 1/τe = 4νei/(3

√
π)(v/vth)

3 and A′
1e is a

combined force defined as

A′
1e =

∂

∂r
ln pe −

5

2

∂ lnTe
∂r

+
Ti
ZiTe

(
∂

∂r
ln pi −

(β1, g2i)

1 + ν2∗eϵ
2

∂ lnTi
∂r

)
. (2.67)

In the above definition, ν∗e is similar to Equation 2.41, with an additional factor
ν∗e = 4ν∗/(3

√
π). Furthermore, the following approximations were made in all

collisionality regimes (α3, g4e)/(α3, g1e) ∼ 1 and for n = 1 or 2

(αn, g4e) ≃ (αn, g1e) (Banana-plateau), (2.68)

(αn, g4e) ≃ (αn, g1e)/(1 + ν2∗eϵ
2) (Plateau-collisional),

(αn, g4e)/(αn, g4e) ∼ ν−2
∗e ϵ

−2 ≪ 1 (Collisional).

The analytical expressions for which the coefficients were fitted are for m,n =
1 or 2

Kmn = K(0)
mn

(
1

1 + amnν
1/2
∗e + bmnν∗e

+
ϵ3/2(c2mn/bmn)ν∗eϵ

3/2

1 + cmnν∗eϵ3/2

)
, (2.69)

and for n = 3

Km3 = K
(0)
m3[1 + am3ν

1/2
∗e + bm3ν∗e]

−1[1 + cm3ν∗eϵ
3/2]−1. (2.70)

The values for numerical coefficients K
(0)
mn, amn, bmn and cmn, where obtained

for the cases in the banana-plateau regime

Kmn ≃ K(0)
mn[1 + amnν

1/2
∗e + bmnν∗e]

−1, (2.71)

and the plateau-collisional regime

Kmn ≃ ϵ3/2(cmn/bmn)K
(0)
mn

(
1 +

1

cmnν∗eϵ3/2(1 + cmnν∗eϵ3/2)

)
(for n=1 or 2), (2.72)

Km3 ≃ (K
(0)
m3/bmnν∗e)[1 + cmnν∗eϵ

3/2]−1

(for n=3). (2.73)

For ϵ≪ 1, values for the numerical coefficients can be found in Table 3 in [12].
These expressions will be used in chapters 4.1-4.5 to compare the simulation
results to the analytical theory.
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2.3 Numerical methods in particle simulations

In this section, numerical methods in particle simulations are discussed from a
general point of view. These schemes are closely related to our current studies
of electron transport in TRIMEG code as we will discuss in Chapter 3.

2.3.1 Discretization of the distribution function

When representing the distribution function in simulations, we need to dis-
cretize it. The total number of physical particles in the system is [16]

Nph =

∫
f(z)J(z)dz, (2.74)

where z = (x⃗, v⃗) represents a generalized phase-space coordinate, and J(z) is
the Jacobian. The number of physical particles in our system can be orders of
magnitude larger than what can be stored in computer memory, hence markers
are used, each of which represents more than just a single physical particle.
The marker distribution function is

g(z) ≈
N∑
i=1

δ(z − zi(t))

J(z)
, (2.75)

where N is the number of markers that are used in the simulation. Furthermore,
the following condition is assumed to be satisfied by the marker distribution
function

dg(z, t)

dt
= 0, (2.76)

where d/dt specifies the collisionless case such as

d

dt
=

∂

∂t
+ v⃗ · ∇+ a⃗ · ∇v⃗. (2.77)

With these definitions, the particle distribution function can be written as [25,
9]

f(z, t) =
Nph

N
Ptot(z, t)g(z, t) ≈

Nph

N

N∑
i=1

pi,tot
δ(z − zi(t))

J(z)
, (2.78)

where pi,tot = P (zi(t), t) is the weight field. This definition gives the full-
f discretization. To further reduce the simulation time by simulating fewer
markers while maintaining a sufficient signal-to-noise ratio, the distribution
function can be split into two parts f = f0 + δf . Here f0 represents the back-
ground distribution function, and δf represents the perturbation. They can
be represented as follows with respective weight fields analogously to Equation
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2.78:

f0(z, t) =
Nph

N
P (z, t)g(z, t) ≈ Nph

N

N∑
i=1

pi
δ(z − zi(t))

J(z)
, (2.79)

δf(z, t) =
Nph

N
W (z, t)g(z, t) ≈ Nph

N

N∑
i=1

wi
δ(z − zi(t))

J(z)
. (2.80)

Furthermore, the time evolution for the weights in the collisionless case can be
written as

d

dt
wi(t) = −pi

d

dt
lnf0(zi(t)), (2.81)

d

dt
pi(t) = pi

d

dt
lnf0(zi(t)), (2.82)

d

dt
(wi(t) + pi(t)) = 0. (2.83)

Assuming that the background distribution is of zeroth order in ρp/R0, where
ρp is the poloidal gyro-radius, the time evolution for the weight equation can
be written as [21]

dw

dt
= (1− w)v⃗d · (−

d ln f0
dx⃗

). (2.84)

To take into account the collision effects, at each time step the collision op-
erators can be applied after the collisionless dynamics [16]. Theoretically, the
collision operator is taken into account in particle simulations by solving the
Langevin equation, as we will discuss in the following section.

2.3.2 Numerical treatment of the collision operator in
particle simulations

Treating the Fokker-Planck equation given in Equation 1.33 numerically, which
is a partial differential equation (PDE), can be simplified using the Langevin
approach [5]. Ito and Stratonovich algebras allow to link the PDE to a
Langevin equation which is a stochastic differential equation (SDE). SDEs are
easier to handle in simulation codes [5]. Hence, the Fokker-Planck equation
can be rewritten as

∂F

∂t
= − ∂

∂v⃗
·
[
ΓabFa −

∂

∂v⃗
· (DabFa)

]
, (2.85)

which is equivalent to the stochastic differential equation for each particle or
marker,

dv⃗

dt
= Γab +GabdW⃗ , (2.86)

where Gab · GT
ab = 2Dab and W⃗ stand for a Wiener process. This can be

discretized using the Euler-Maruyama scheme [5]

∆v⃗ab = Γab∆t+Gab

√
∆tR⃗b, (2.87)
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where Rb is a vector of three independent random numbers. However, without
any approximation, the potentials defined in Equations 1.40-1.41 have to be
computed for each Langevin kick, which would result in O(N2) computation
complexity for the number of markers. By making analytical approximations
for the potentials and distribution function and using expansions and trunca-
tion, a complexity of O(N) can be achieved. The Rosenbluth potentials can
be expressed using expansion of the distribution function around an unshifted
Maxwellian. Afterward, the truncation is made for high-order moments. The
sensitivity for numerical resolution is high for higher-order moments, and they
are also more effectively damped due to collisions hence the truncation is jus-
tified. However, the truncation now removes momentum and energy conser-
vation, which would be removed regardless due to numerical resolution. This
raises the issue of a correction term to be added to the collision operator Ccorr

ab .
The full non-linear collision operator can be written as

Cab(fa, fb) = Cab(fMa, fMb) + Cab(δfa, fMb)

+ Cab(fMa, δfb) + Cab(δfa, δfb), (2.88)

where the linear operator can be obtained if the last term is removed. In addi-
tion, the field part Cab(fMa, δfb) is also difficult to handle and is approximated.
The method proposed by Lin [21] is to use the collision operator properties.
Using the linearized collision operator given in Equation 1.43 and averaging
over the gyro-phase gives the following equation

C(δf) =
∂

∂v∥
(νs∥δf) +

∂

∂v2⊥
(νs⊥δf) +

∂2

∂v∥∂v
2
⊥
(ν∥⊥δf)

+
1

2

∂2

∂v2∥
(ν∥δf) +

1

2

∂2

(∂v2⊥)
2
(ν⊥δf) + P,

(2.89)

with δf representing the gyro-center distribution, where collision coefficients
νs∥, νs⊥, ν⊥, ν∥, ν⊥∥ are functions of F,G and H given in Equations 1.44-1.46,
the exact definition of these coefficients can be found in the reference [21]. The
test particle drag and diffusion terms can be implemented using the following
Monte-Carlo method [35]

v∥ = v∥0 − νs∥∆t+
√
12(R1 − 0.5)

√
ν∥∆t, (2.90)

v2⊥ =v2⊥0 − νs⊥∆t+
√
12(R2 − 0.5)

√√√√(v⊥ −
v2∥⊥
ν∥

)
∆t

+
√
12(R1 − 0.5)

ν∥⊥
ν∥

√
ν∥∆t.

(2.91)

The momentum and energy conservation term P can be calculated analytically,
and this term can be implemented by changing particle weights. This ensures
the conservation of first-order momentum and energy and is given by [35]

∆w = −v⃗ · ∂P⃗ −

(
v2

v2th,α
− 3

2

)
δE (2.92)
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where δP⃗ and δE are given by

δP⃗ =
2

nv2thα

∑
i

wi∆v⃗i, (2.93)

δE =
2

3nv2thα

∑
i

wi∆v
2
i . (2.94)

As shown by Lin [21] this method does not take into account the velocity de-
pendence of the energy and momentum loss rates, which if taken into account
shows better agreement in preserving the shape of a shifted Maxwellian in ve-
locity space, and gives correct energy fluxes unlike the formulation in Equation
2.92. After taking into account the velocity dependence, the change in weight
is represented by

∆w = −3

√
π

2
ϕ(x)

(vthα
v

)3
v⃗ · δP⃗ − 3

√
π

2
×
(
ϕ(x)− dϕ(x)

dx

)
vthα
v
δE, (2.95)

where ϕ is given in Equation 1.47. In this work only the electron-ion Lorentz
collision operator is used, given by Equation 1.50, which is written using the
Monte-Carlo method as [21]

ξ = ξ0(1− ν∆t) + (R− 0.5)[12(1− ξ20)ν∆t]
1/2, (2.96)

where ξ = v∥/v, and R is a uniform random number between 0 and 1 [21].
Hence, in our simulation we have implemented the discretized version of the
collision equation described by equation 1.50, as shown in equation 2.96.

2.3.3 Solving Equations Numerically

The equations of the kinetic system are the Boltzmann equation and the Pois-
son equation for the electric potential that yields the electric field. One of the
popular methods for tackling this problem is the particle-in-cell (PIC) method.
The algorithm is to randomly or pseudo-randomly initialize the particles and
then solve the equations of motion to model their evolution. The time scheme
for the equation of motion in the simplest case can be the Euler scheme. In
this scheme, we deal with the initial value problem, where the time derivative
F ′ = F(t, F ) is known, and the initial value of the function at t = 0 is also
known. Given a time step size ∆t such as for any function F

Ft+1 = Ft +∆tF ′
t . (2.97)

This scheme gets closer to the real solution for smaller step sizes. A similar
method that provides better convergence for the same time step size is the
Runge-Kutta method (sometimes also called RK4), where the evolution is
calculated as

Ft+1 = Ft +
1

6
∆t(k1 + 2k2 + 2k3 + k4), (2.98)
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and the k coefficients are

k1 = F(t, Ft), (2.99)

k2 = F(t+
∆t

2
, Ft +∆t

k1
2
), (2.100)

k3 = F(t+
∆t

2
, Ft +∆t

k2
2
), (2.101)

k4 = F(tn +∆t, Ft +∆tk3). (2.102)

For the equations of motion, the electric field values are needed. The electric
field is calculated on a grid. There are a number of grid-based methods to
solve the Poisson equation such as the finite difference method, the Fourier
spectral method, and the finite element method [29]. In TRIMEG, JOREK,
ORB5 and GYGLES, the finite element method is used. For solving the field
equations, we look for the solution in a finite-dimensional vector space with a
set of basis functions, and the solution is determined by the coefficients of the
given basis. Hence, in a general case given the Equation [14]

LΦ = f, (2.103)

where L is a linear differential operator, f(x) is a known function, and Φ(x)
is the function to be solved. Each of these functions can be represented in the
chosen basis as

Φ =
N∑
i=1

ϕiφi(x), f =
N∑
i=1

fiφi(x), (2.104)

where φi are the basis functions. A choice for the basis functions could be the
B-spline functions which are continuous piece-wise cubic functions that have
up to continuous second derivatives, as shown in Figure 2.7.

Introducing a test function V (x) into the differential equation as∫ b

a

L(U)V dx =

∫ b

a

fV dx, (2.105)

where integral is over the domain a ≤ x ≤ b. Requiring that this equation be
satisfied for every test function gives us the weak form of the original differential
equation, and this form can be discretized using the Galerkin method [14]. If
we plug Equations 2.104 in the weak form and assume that the linear operator
is L = −p d2

dx2
, after integrating by parts we get the following equation

N∑
j=1

p

(∫ b

a

φ′
kφ

′
jdx

)
ϕj =

∫ b

a

fφkdx (2.106)

where k is the degrees of freedom of the solution space S. This equation can
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Figure 2.7: Basic cubic B-spline basis function. Taken from [14].

be also expressed as a matrix equation

ML,kjϕj = MR,kjfk, (2.107)

ML,kj =

∫ b

a

pϕ′
kϕ

′
jdx , (2.108)

MR,kj =

∫ b

a

ϕkϕjdx , (2.109)

which can be solved efficiently as described in more detail in [14]. For treat-
ing the realistic geometry of tokamak plasmas, the two-dimensional or three-
dimensional finite element solvers are developed in various codes with details
given in previous literature [19, 13, 9, 16, 24].



Chapter 3

Physics model and equations

3.1 TRIMEG (TRIangular MEsh based Gy-

rokinetic code)

3.1.1 General description of TRIMEG code

The main code used for the studies of neoclassical physics and the development
of the physics module in this work is the TRIangular MEsh based Gyrokinetic
(TRIMEG) code [24]. In the TRIMEG code, an unstructured mesh-based
finite element method is adopted in the poloidal cross-section, and a Fourier
decomposition scheme is adopted in the toroidal direction, which is a mixed
Particle in cell - Particle in Fourier (PIC-PIF) scheme. While the calculations
in the poloidal cross-section use the Finite element method described in section
2.3.3, the calculations in the toroidal direction are made using the PIF method
described in [24]. However, in this work, axisymmetry in the toroidal direction
(n = 0) is adopted for the study of neoclassical physics, without addressing
instabilities or turbulence. TRIMEG has the possibility of also including the
open field line region (OFL), which allows the simulation of the full plasma
volume.

The poloidal cross-section is divided into triangles as shown in Figure 3.1.
Based on the particle’s position with respect to the triangles, the space char-
acteristics such as field or density are calculated by using the finite element
method and the Fourier decomposition, while also taking into account the
proximity of the marker to the triangle’s vertices and calculating the contri-
bution proportionally. The mesh can be arbitrarily dense, which improves
the accuracy of the space characteristics [24]. The code is divided into three
physics classes: particles, field, and equilibrium. The normalization used is de-
scribed in Table 3.1. The equilibrium information is loaded using the EQDSK
file from Equilibrium reconstruction codes [17] and the magnetic field can be
represented as Equation 2.25, and using B-spline subroutines the B-field com-

30
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Figure 3.1: Representation of the mesh used in TRIMEG, for different geometries.

Taken from [24].

ponents are calculated as

BR = − 1

R

∂ψ

∂Z
, BZ =

1

R

∂ψ

∂R
, Bϕ =

F

R
, (3.1)

where ψ = ψ(R,Z) is provided in the EQDSK file on (R,Z) grid points and
is represented using B-splines in the TRIMEG code. The guiding center equa-
tions are the same as Equations 2.33–2.34. The velocities can also be decom-
posed as

˙⃗
R = v∥0 + vd0 + vE, (3.2)

v̇∥ = v̇∥0 + v̇∥E, (3.3)

where subscripts 0 and E indicate motion due to the equilibrium, and the
electric field respectively. In this work, the electric field is not included, and
the drift velocities are calculated as

v⃗d0 ≈
v2⊥ + 2v2∥
2ωcB

b⃗×∇B, (3.4)

v̇∥0 ≈ −µ(bR∂RB + bZ∂ZB), (3.5)

where ωc is the cyclotron frequency, and µ is the magnetic moment. While
the higher order ρ∗ = ρth/a terms are ignored in Equations 3.4-3.5, where
ρth = mvth/(ZeB), and a is the minor radius. The complete forms with the ρ∗

terms have been implemented recently [25]. In our work, we adopted Equations
3.4-3.5, which is accurate enough for neoclassical studies in typical parameter
regimes according to previous theoretical models [12].
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TRIMEG Normalization units

mN mi

RN 1m

TN mNv
2
N/2

vN vth,i =
√

2TN
mN

=
√

2Ti,ref
mi

tN
RN

vN

BN 1T

Table 3.1: Normalization in TRIMEG [24].

3.1.2 New development in this work and difference from
the previous TRIMEG code

For the δf scheme in TRIMEG, the distribution function is represented by the
lowest order approximation f0 and the higher order perturbations δf , namely,
f = f0 + δf . f0 is chosen as Maxwellian distribution and δf is obtained
from

d

dt
δf(t) = − d

dt
f0 + C(f, f) , (3.6)

d

dt
=

∂

∂t
+ Ṙ · ∇+ v̇∥

∂

∂v∥
. (3.7)

In this work, the Maxwell distribution is chosen (f0 = fM),

fM =
n0

(2T/m)3π3/2
exp

{
−
mv2∥
2T

− mµB

T

}
, (3.8)

where T and n are functions of the equilibrium magnetic flux, and thus

d

dt
ln fM = (v∥ + Ṙd + δṘ) ·

[
κ⃗n +

(
mv2∥
2T

+
mµB

T
− 3

2

)
κ⃗T − mµB

T
κ⃗B

]
− (v̇∥,0 + δv̇∥)

mv∥
T

, (3.9)

where κ⃗n,T,B ≡ ∇ ln{n, T,B}, Ṙd is the magnetic drift velocity, δṘ is the per-
turbed velocity due to the wave field and the neoclassical electric field, v̇∥,0
and δv̇∥ are due to the mirror force and the wave/neoclassical fields, respec-
tively. Furthermore, the perturbed parts δR and δv̇∥ contain contributions
from the turbulence as well as the radial electric field and can be represented
as δR = δRturb+δREnc . For models with Er = Er(r), we readily have δv̇∥ = 0,
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which is the assumption used in some neoclassical studies [12]. More gener-
ally, the neoclassical electric field can vary in the poloidal direction and it is
denoted as Enc = Enc(r, θ)

In the previous TRIMEG work [24, 26], the neoclassical effects were ignored,
yielding [24]

d

dt
ln fM = δṘ ·

[
κ⃗n +

(
mv2∥
2T

+
mµB

T
− 3

2

)
κ⃗T − mµB

T
κ⃗B

]
− δv̇∥

mv∥
T

.

(3.10)

For the neoclassical studies in this thesis, we ignore the n ̸= 0 modes and we
have

d

dt
ln fM = (v∥ + Ṙd + δṘEnc) ·

[
κ⃗n +

(
mv2∥
2T

+
mµB

T
− 3

2

)
κ⃗T − mµB

T
κ⃗B

]
− (v̇∥,0 + δv̇∥Enc)

mv∥
T

, (3.11)

where δṘEnc and δv̇∥Enc are the perturbed velocity and acceleration due to
the neoclassical electric field, respectively. In this work, since we focus on
electron transport, Enc is not taken into account, as adopted by previous work
[21]. Note that Equations 3.9–3.11 are written in (R, v∥, µ) coordinates, for
demonstrating the general form of the models without and with neoclassical
physics. The right-hand side can be also written in (R, E, µ) coordinates, in
order to use the constants of motion (E, µ). Furthermore, simplifications, such
as no consideration of the electric field, can be adopted to get the implemented
equation in TRIMEG in this work, as shown in Equation 3.23 in the next
section.

3.2 Diagnosis for axisymmetric components in

TRIMEG

In the studies of neoclassical transport, the particle and energy fluxes and the
bootstrap current are all axisymmetric variables and need to be calculated nu-
merically. In calculating the variables in configuration space using the markers,
three kinds of volumes are used in the following derivation,

• ∆Ṽ for local average which is an infinitesimal volume in all three direc-
tions in configuration space;

• ∆V̂ for toroidal average which is a volume with an infinitesimal area in
the poloidal cross-section but with the whole toroidal range;

• ∆V for flux surface average which is a volume between two adjacent
magnetic flux surfaces.
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An important routine implemented in the code during our studies is the flux
surface average calculation. For any function F , the flux surface average is
[12]

⟨F ⟩ =
∫
∆V

d3R⃗F∫
∆V

d3R⃗
=
dψ

dV

∫
dS

|∇ψ|
F, (3.12)

where ∆V is the small volume between two adjacent flux surfaces, and dS is the
area element on the flux surface. The functions we consider are independent
of the toroidal coordinate, hence we can write in general for F

F (ψ, θ) =

∫
∆V̂

d3R⃗δfI∫
∆V̂

d3R⃗
, (3.13)

where ∆V̂ is an arbitrarily small volume element with a small area in the
poloidal cross-section but a toroidal width in the whole domain, i.e., ϕ ∈
[0, 2π), and the choice of I depends on the function F we are calculating. For
example, I = v∥ for F = jb. Because fm = N/Nphf , δf can be written as

δf =
Nph

Nm

Nm∑
p=1

wp
δ(R⃗− R⃗p)δ(v⃗ − v⃗p)

JR⃗
, (3.14)

where J is the Jacobian that depends on the specific coordinates used in the
model.

For general geometry, we can plug in the definitions and re-write the flux
surface average given by Equation 3.12 as

⟨F ⟩ = 1

∆V

∫
∆V

d3R⃗′ 1

∆V̂

∫
∆V̂

d3R⃗
1

JR⃗

Nph

Nm

Nm∑
p=1

wpδ(R⃗− R⃗p)δ(v⃗ − v⃗p)I, (3.15)

after taking the integrals this is simplified to

⟨F ⟩ = 1

∆V

Nph

Nm

∑
p∈∆V

wpIp. (3.16)

Note that we can also readily calculate the flux surface average for 3D variables
instead of the 2D axisymmetric variable in Equation 3.13, namely,

F (ψ, θ, ϕ) =

∫
∆Ṽ

d3R⃗δfI∫
∆Ṽ

d3R⃗
, (3.17)

where ∆Ṽ is an infinitesimal volume. The flux surface average of F yields the
same result in Equation 3.16.

In some cases, the toroidal average is used for the analysis instead of the
flux surface average (which is relevant for future applications not using n =
0):

⟨F ⟩ϕ =
∫ 2π

0
dϕF∫ 2π

0
dϕ

. (3.18)
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When plugging in the definitions for F , the average can be written as

⟨F ⟩ϕ =
1∫ 2π

0
dϕ

1

∆Ṽ

Nph

Nm

∫
∆Ṽ

d3R⃗

∫
dϕ

Nm∑
p=1

wpδ(R⃗− R⃗p)δ(v⃗ − v⃗p)I, (3.19)

where if integrals over the toroidal direction and over an arbitrarily small
volume are taken, this equation can be rewritten as

⟨F ⟩ϕ =
1

2π∆S̃
∆ϕ

Nph

Nm

∑
p∈∆S̃

1

Rp

wpIp, (3.20)

where ∆Ṽ = R̃∆S̃∆ϕ has been adopted.

In our analysis we deal with the flux surface averages normalized by average
density, hence if we take into account that Nph = Vtot⟨n⟩V , where Vtot is the
total volume and ⟨n⟩ is the average density in this volume, the flux surface
average equation can be rewritten as

⟨F ⟩ϕ
⟨n⟩V

=
1

2π∆S̃

Vtot
Nm

∑
p∈∆S̃

1

Rp

wpIp, (3.21)

where ∆Ṽ = ∆S̃R̃∆ϕ was used. The values used for analysis in our studies
are calculated as

⟨F ⟩ϕ
⟨n⟩V

=
1

−ē ns

nN

1

∆S̃
Vtot

2πNm
(−ē ns

nN
)
∑

p∈∆S̃
1
Rp
wpIp, (3.22)

where ns/nN specifies the number of markers of the species for which the flux
is calculated divided by the number of total markers in the simulation, and ē
is the normalized charge for the species. The underlined part in Equation 3.22
has already been implemented in the simulation code, under the subroutine
particle_cls_p2g00. The flux surface average Eq. 3.16 can be also expressed
in the same way. For the calculation of the annulus area in shaped tokamak
geometry, the Monte-Carlo integration method is used and the annulus area is
calculated at the beginning of the simulation when the markers are distributed
uniformly.

3.3 Implemented Physical model

3.3.1 Implemented Equations and normalizations

For our neoclassical studies, the TRIMEG code was modified as described in
this section. In addition to the discussions in 3.1.2, the δf model was adopted
and a weight equation was implemented as given by Equation 2.84 in our
(R,Z, ϕ) coordinates

dw

dt
= (1− w)(v⃗d · κ⃗) = (1− w)(vd,RκR + vd,ZκZ), (3.23)
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where κ is the negative gradient of the equilibrium distribution function given
by

κ⃗ = −d ln f0
dx⃗

= −
(
d ln f0
dn

dn

dR
+
d ln f0
dT

dT

dR

)
R̂−

(
d ln f0
dn

dn

dZ
+
d ln f0
dT

dT

dZ

)
Ẑ

= −
(
d lnn

dR
+

(
mv2

2T
− 3

2

)
d lnT

dR

)
R̂−

(
d lnn

dZ
+

(
mv2

2T
− 3

2

)
d lnT

dZ

)
Ẑ.

(3.24)

Taking into account the normalization given in table 3.1, the normalized equa-
tion implemented in the code is

dw

dt
= (1− w)(−v̄d,R

(
d lnn

dR
+

(
m̄v̄2∥

T̄
+

2µ̄m̄B̄

T̄
− 3

2

)
d lnT

dR

)

−v̄d,Z

(
d lnn

dZ
+

(
m̄v̄2∥

T̄
+

2µ̄m̄B̄

T̄
− 3

2

)
d lnT

dZ

)
.

(3.25)

To take into account the collisional effects, the discretized Lorentz collision
operator given by Equation 2.96 is implemented in the code,

ξ = ξ0(1− ν̄∆t) + (R− 0.5)[12(1− ξ20)ν̄∆t]
1/2, (3.26)

where ξ is the particle pitch as defined earlier, and ν̄ = νtN is the normalized
collision frequency. Furthermore, regardless of the choice of ν̄∆t, due to the
choice of R being random, |ξ| can become greater than 1, as shown in Figure
3.2. This would cause a nonphysical solution with |v∥/v| > 1, which was
fixed by re-setting |ξ| equal to exactly 1 in those cases. For large values of
ν̄∆t(> 0.5), more markers end up with |ξ| > 1 after the collision, and the
re-setting operation is needed. For small values of ν̄∆t(< 0.1), only a small
portion of markers enter the |ξ| > 1 zone, and the re-setting operation is
needed less frequently. In the simulations, the value for ν̄∆t is chosen to be
less than 0.1 to avoid frequent use of re-setting.

3.3.2 Diagnosis and benchmark using the local neoclas-
sical transport theory

The benchmark is done by comparing the simulation results to the theoretical
local electron transport model [12, 21]. We can also write simplified equations
for electrons in a circular geometry, where ion charge is equal to one, and
assuming constant pressure and temperature for the ion species. From the
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Figure 3.2: Values of ξ0 and ν∆t when ξ becomes larger than 1, during evolution

using the Lorentz collision operator given in Equation 2.96. Here the random num-

ber R is taken to be 0.9, and νcol represents the normalized collision frequency.

discussions in section 2.2.4, we can write these equations as follows

A′
1e =

∂ lnne
∂r

− 3

2

∂ lnTe
∂r

, (3.27)

Γe = −ne
4

3
√
π
νeiϵ

−3/2ρ2q2
(
K11A

′
1e +K12

∂ lnTe
∂r

)
, (3.28)

qe = −neTe
4

3
√
π
νeiϵ

−3/2ρ2q2
(
K12A

′
1e +K22

∂ lnTe
∂r

)
− 5

2
TeΓe, (3.29)〈

(J∥ − J∥s)/h
〉

= −ne
Te

mevth,e
eϵ−1/2ρq

(
K13A

′
1e +K23

∂ lnTe
∂r

)
, (3.30)

where the dimensionless K coefficients are also given in Equations 2.69-2.70
and using values for the numerical coefficients for charge number equal to 1
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[12]:

K11 = 1.04

(
1

1 + 2.01ν
1/2
∗e + 1.53ν∗e

+
ϵ3/2(0.892/1.53)ν∗eϵ

3/2

1 + 0.89ν∗eϵ3/2

)
, (3.31)

K12 = 1.20

(
1

1 + 0.76ν
1/2
∗e + 0.67ν∗e

+
ϵ3/2(0.562/0.67)ν∗eϵ

3/2

1 + 0.56ν∗eϵ3/2

)
, (3.32)

K22 = 2.55

(
1

1 + 0.45ν
1/2
∗e + 0.43ν∗e

+
ϵ3/2(0.432/0.43)ν∗eϵ

3/2

1 + 0.43ν∗eϵ3/2

)
, (3.33)

K13 = 2.3[1 + 1.02ν1/2∗e + 1.07ν∗e]
−1[1 + 1.07ν∗eϵ

3/2]−1, (3.34)

K23 = 4.19[1 + 0.57ν1/2∗e + 0.61ν∗e]
−1[1 + 0.61ν∗eϵ

3/2]−1, (3.35)

K33 = 1.83[1 + 0.68ν1/2∗e + 0.32ν∗e]
−1[1 + 0.66ν∗eϵ

3/2]−1. (3.36)

The normalized equations used in diagnostics are

Ā′
1e =

A′
1e

RN

= A′
1e, (3.37a)

Γ̄e =
Γe
nvN

= − 4

3
√
π
ν̄eiϵ

−3/2ρ2q2
(
K11A

′
1e +K12

∂ lnTe
∂r

)
, (3.37b)

q̄e =
qe

nvNmNv2N
= −1

2

4

3
√
π
ν̄eiϵ

−3/2ρ2q2
(
K12A

′
1e +K22

∂ lnTe
∂r

)
− 5

4
Γ̄e,

(3.37c)

j̄b =
jb

einvN
=

1

2

√
mi

me

ϵ−1/2ρq

(
K13A

′
1e +K23

∂ lnTe
∂r

)
, (3.37d)

where the normalized quantities are denoted by a bar over the variables, and〈
(J∥ − J∥s)/h

〉
≡ jb. In the asymptotic limits of collisionality, these formulas

can also be re-written as described in the paper by Lin [21]. For the banana
regime, we go to the limit of ν → 0. We get the following analytical equations
for particle flux Γ, energy flux Q, and the bootstrap current jb [21]:

Γ = ⟨
∫
d3vvdrf1⟩ =

3

8
I1νρ

2 q
2

ϵ2
n(κn + κt),

Q = ⟨
∫
d3v

1

2
mv2vdrf1⟩ =

5T

2

(
Γ +

3

8
I1νρ

2 q
2

ϵ2
nκT

)
,

jb = ⟨
∫
d3v

v∥
h
f1⟩ =

3

4
I3

c

Bp0

dp

dr
,

(3.38)

where ⟨...⟩ ≡
∫ 2π

0
hdθ/(2π) represents the flux surface average. Additionally,

ϵ = r/R0, h ≡ 1 + ϵ cos θ, ρ = mvth,ec/eB0, q = rB0/(R0Bp0), p = (3/2)nT ,
and to the lowest order in ϵ,

I1 = I3 = 1.38
√
2ϵ. (3.39)
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For the collisional limit we go to the limit ν → ∞ and get the following
analytical solutions [21]

Γ = νq2ρ2n(κn + κT ),

Q =
5T

2
(Γ + νq2ρ2nκT ).

(3.40)

The normalized form of the fluxes and bootstrap current are as follows, for the
banana regime,

Γ̄ =
Γ

nvN
=

3

8
I1ν̄ρ

2 q
2

ϵ2
(κn + κT ), (3.41)

Q̄ =
Q

nvNmNv2N
=

5

2

Te
mNv2N

(
Γ̄ +

3

8
I1ν̄ρ

2 q
2

ϵ2
κT

)
, (3.42)

j̄b =
jb

einvN
=

9

16

√
mi

me

I3ρ
q

ϵ
(κT + κn). (3.43)

For the collisional regime,

Γ̄ = ν̄q2ρ2(κn + κT ), (3.44)

Q̄ =
5

2

Te
miv2th,i

(
Γ̄ + ν̄q2ρ2κT

)
, (3.45)

where ν̄ = νtN represents the normalized collision frequency. Comparisons
to the simulation results are done by calculating values using the flux surface
average methods described in section 3.2 during the simulation, where the
values for I are chosen as I = vrmv

2/2 for the energy flux, and I = vr for
the particle flux, where vr is the radial drift velocity. The analytical formulas
described in this chapter are implemented in the Matlab scripts, where we are
taking the average values of q and κn for the flux surfaces, and in the Fortran
code, where the values for κn and q are taken for each grid point locally. These
results are described in sections 4.1-4.5.

Overall, the analytical expressions for the fluxes were added to the code, in
addition to the weight equation, collision operator, and the bootstrap current
as well as the particle and energy flux calculations.



Chapter 4

Results of Neoclassical Electron
transport and bootstrap
current

4.1 Benchmark of the local electron transport

model

We first try to reproduce results of an earlier work [21], where a single flux
surface was considered to study the neoclassical transport of electrons. We sim-
ulate a finite width annulus using the ad hoc equilibrium, assuming magnetic
surfaces to be concentric and circular, using the Matlab version of TRIMEG-
GKX. We use the same parameters in our simulation taking into account the
difference in normalization. In the mentioned paper, the normalization used
is the gyro-kinetic normalization, also shown in Table 4.1. However, for simu-
lating the annulus we use the normalization given in table 4.2.

Furthermore, as we are dealing with circular geometry we can rewrite the flux

Gyrokinetic Normalization units

mNG mi

RNG ρs =
√

Te
mi

mi

eB0
(Te = Ti, ρs =

√
Timi

eB0
=

ρth,i√
2
)

TNG Te(= Ti)

vNG vth,i =
√

2TN
mN

=
√

2Ti
mi

Table 4.1: Gyrokinetic Normalization used in [21].

40
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Normalization units used in benchmark

mN me

RN 1m

TN 2Te(= 2Ti)

vN vth,e =
√

TN
mN

=
√

2Te
me

Table 4.2: Normalization used for benchmark.

surface calculation for some functions F (r, θ) as:

⟨F ⟩ = 1

4π2R0r

∫ 2π

0

dϕ

∫ 2π

0

dθrRF =
1

2π

∫ 2π

0

dθhF, (4.1)

where h ≡ 1 + r/R0cosθ.

We obtained the result of our scan given in Figure 4.1, where the scanned pa-
rameter is ν∗ = ϵ−3/2ν

√
2qR0/vth, also given in Equation 2.41. The simulation

results are compared to the analytical theory [12], and the exact equations
are also described in section 3.3.2. Furthermore, to avoid the high levels of
noise in the later parts of the simulation, the values for the energy and particle
flux are taken after 15 transit periods. Looking at the equations for the flux
calculations, the particle and energy fluxes need less time to saturate than
the bootstrap current, as the radial drift is constant, and the change of the
perpendicular velocity distribution is mostly due to the radial transport which
is small. However, for the bootstrap current, as discussed in the background
section 2.2.3, with collisions the parallel velocity distribution function changes
until saturation which is the cause of the bootstrap current. The collision
frequency determines the speed of this change, hence the bootstrap current
saturation is slower than the fluxes associated with the radial drift velocity.
To investigate the differences, we can look at the signal to noise ratios for
different values of ν∗.

As the difference between analytical and simulation results are somewhat high
for the banana regime limit, we can look at the time evolution of the fluxes
given in Figure 4.2 to investigate why. We can see that the time to reach the
saturated results for the bootstrap current is few thousand transit periods, and
the fluctuations in the fluxes are increasing in time. If we look at Figure 4.3,
we can see that the noise is increasing to become few magnitudes of the signal,
hence why we are taking the values for the particle flux and the energy flux at
the first few transit periods. Therefore, the cause for the difference between
analytical solution and the simulation results is most likely the high noise level
accumulated during the simulation time.

If we look at the plateau regime, given in Figure 4.4, the noise levels are much
smaller and the agreement between the simulation results and the analytical
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Figure 4.1: Simulation for ad hoc equilibrium in finite width annulus, using same

parameters as [21], and ν∗ is given in Equation 2.41. jb, Γ, and Q are the normalized

values for particle flux, bootstrap current, and energy flux respectively. The number

of markers used is 105. The range of ν∗ < 1 corresponds to the banana regime,

1 < ν∗ < 10 to the plateau regime, and 10 < ν∗ to the collisional regime. Due to

high signal to noise ratio, the values for particle flux and energy flux were taken

at t = 15 · Ttr for low collision frequency cases, or at t = 10 · Ttr for high collision

frequencies.

solutions are also much better.

For the collisional regime, given in Figure 4.5, we also observe high oscillations
in the bootstrap current, which could be the reason for the large difference in
the analytical solutions and the simulation.

Overall, we observe very high noise level and the next step is to use the
TRIMEG-C0 version of the code in Fortran, which is capable to simulate
larger number of markers in the whole volume of the Tokamak, this will de-
crease the noise levels and produce better agreement between theory and the
simulation.
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Figure 4.2: Time evolution of fluxes in the banana regime, for the simulation of

a finite width annulus, using same parameters as [21], and ν∗ is given in Equation

2.41. The number of markers used is 105. The red lines represent the smoothed data

using a moving average filter with a window size of 10% of the total data points.

Due to high signal to noise ratio, the values for particle flux and energy flux were

taken at t = 15 · Ttr for low collision frequency cases, or at t = 10 · Ttr for high

collision frequencies.

Figure 4.3: Time evolution of the particle flux Γ for the simulation of a finite

width annulus, using same parameters as [21], and ν∗ is given in Equation 2.41.

The number of markers used is 105.
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Figure 4.4: Time evolution of fluxes in the plateau regime, for the simulation of

a finite width annulus, using same parameters as [21], and ν∗ is given in Equation

2.41. The number of markers used is 105. The red lines represent the smoothed data

using a moving average filter with a window size of 10% of the total data points.

Figure 4.5: Time evolution of fluxes in the collisional regime, for the simulation of

a finite width annulus, using same parameters as [21], and ν∗ is given in Equation

2.41. The number of markers used is 105. The red lines represent the smoothed data

using a moving average filter with a window size of 10% of the total data points.
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4.2 Convergence studies in TRIMEG-C0 (the

unstructured mesh version in Fortran)

The numerical verification of the implemented collision operator and resulting
neoclassical physics in the TRIMEG C0 version is discussed here. We are now
simulating the full torus geometry and no longer a fixed-width annulus. The
dependence of the results on the different parameters of the simulation such
as the time step size, marker number, and the ways of averaging the results is
discussed. In this section, all the cases considered are run using the ”Cyclone
profiles” which are described in the next section.

4.2.1 The convergence of the net fluxes and current

We start by analyzing the net fluxes and current for testing the convergence.
The case considered here is described in more detail in section 4.4. Looking at
a 2D picture of the fluxes given in Figure 4.6, we see the flux value at each grid
point. For the current analysis we add up values for all the grid points and
look at the changes for the net fluxes and in the next section we consider the
changes in the flux surface averaged values. We start with the consideration
of the marker numbers, given in Figure 4.7. We see that the time it takes to
reach saturation is independent of the number of markers although the noise
levels are significantly different. However, if the number of markers is 105

instead of 106, the difference in the fluxes is in the order of 102, hence it is
important during the simulation to not have too few markers. Furthermore,
the behaviour is the same if we consider high collisionality cases, as seen in
Figures 4.9-4.10.

Figure 4.6: (R,Z) cross-section of the TRIMEG-C0 simulation of the bootstrap

current and fluxes, using 107 markers for 20 transit periods, cyclone equilibrium

profiles, and ν̄ = 318.

Another important parameter to consider when running simulations is the
time-step size. The ideal choice would be as large as possible, to be able to
run longer simulations. However, for large values of it, the simulation results
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Figure 4.7: Dependence of net bootstrap current and net fluxes, on the number

of markers used for the simulation. The time-step size is 0.05/Ttr, and ν̄ = 0.003.

Figure 4.8: Dependence of net bootstrap current and net fluxes, on the number

of markers used for the simulation, with same parameters as Figure 4.7, but for

different number of markers. Similarly, the time-step size is 0.05/Ttr, and ν̄ = 0.003.

are no longer physical. Considering a case when the collision frequency is
small, as seen on Figure 4.11, we observe that for large time-step size, the
markers accumulate in the center of the grid. As for the collisional case, if
the time-step size is very large, the particles leave the simulation grid fairly
soon, which is the expected behaviour in the high collision case. Considering a
single particle, if the random number in the collision operator becomes 1, the
parallel velocity could also be converted to the perpendicular velocity, hence
the particle would have a very large radial velocity and could drift outside of
the simulation domain in a single step of the random walk. Furthermore, as we
are considering small angle collisions, when the collision operator is applied,
the change in the pitch needs to be small so that we have small angle collisions.
As seen from Equation 2.96, the quantity ν∆t determines the magnitude of
the change in the pitch and needs to be sufficiently small to stay in the small
angle scattering limit.
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Figure 4.9: Dependence of net bootstrap current and net fluxes, on the number

of markers used for the simulation. The time-step size is 0.0005/Ttr, and ν̄ = 318.

Figure 4.10: Dependence of net bootstrap current and net fluxes, on the number

of markers used for the simulation, with same parameters as Figure 4.9, but for

different number of markers. Similarly, the time-step size is 0.0005/Ttr, and ν̄ = 318.

4.2.2 The convergence of the flux surface averaged fluxes
and current

As the analytical values are calculated for the flux surface averaged fluxes, it
is important to also analyse the convergence of these profiles from the particle
simulations. The important parameters for this convergence study are also the
particle number, as well as the method of the flux surface average. The radial
profiles of the bootstrap current and the fluxes are visualized and compared
among cases with different values of the marker numbers. Two sets of cases
are studied. For the high collisionality case, ν̄ ≈ 300 the results are shown
in Figure 4.13. As the marker number is equal to or larger than 106, the
radial profiles start to converge. The low collision case with ν̄ ≈ 0.003, is
also analysed. Good convergence of the fluxes is also observed as the marker
number is equal to or larger than 106. For the bootstrap current, the physical
values are low according to the theoretical results [12] and thus the noise-to-
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Figure 4.11: Distribution in space for randomly picked 7812 markers out of 106

used during the simulation, for different values of time-step size dt. For all figures

the number of time-steps is 5000, and ν̄ = 0.003.

Figure 4.12: Distribution in space for randomly picked 7812 markers out of 106

used during the simulation, for different values of time-step size dt. For all figures

the number of time-steps is 5000, and ν̄ = 318.

signal ratio in the particle simulation is high, which leads to worse convergence
of the bootstrap current compared to the other quantities. The convergence
can be improved by further increasing the marker number or using a longer
time evolution average, as we adopted in the following chapters.
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Figure 4.13: The particle and the energy fluxes as well as the bootstrap current

for different values of the marker number. This is a high collision frequency case

with ν̄ ≈ 300.

Figure 4.14: The particle and the energy fluxes as well as the bootstrap current

for different values of the marker number. This is a low collision frequency case

with ν̄ ≈ 0.003.
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4.3 Electron transport results for the larger

aspect ratio case

In this section, we will consider the International Tokamak Physics Activity
(ITPA) case, which has been defined in the benchmark of the Toroidal Alfvén
Eigenmode (TAE) driven by energetic particles (EPs) [15]. This is a Tokamak
plasma featured by a large aspect ratio a/R0 = 1/10 and concentric circular
magnetic surfaces. The on-axis magnetic field is 3T. The major radius R0 =
10m. The nominal safety factor is q = 1.71 + 0.16(r/a)2, featured by low
magnetic shear. In generating the EQDSK file for the ad-hoc equilibrium, the
analytical form is adopted,

q̄ = q̄0 + q̄2r
2 , (4.2)

where q̄ = q
√
1− r2/R2

0. A simplified match to the q profile is adopted by
letting

q̄0 = q0 = 1.71 , q̄2 = q2 = 0.16 , (4.3)

which is a good approximation in the moderate to large aspect ratio. Note
that the 1D q profile is shown along the radial-like coordinate

√
ψ, where ψ

is the normalized poloidal magnetic flux. The magnetic field and the q profile
are visualized in Figure 4.15.

Figure 4.15: The q profiles (left) and poloidal magnetic flux map (right) of the

ITPA large aspect ratio case.

In our study of neoclassical transport and bootstrap current generation, we
only keep the electrons as the kinetic species and adopt uniform electron tem-
perature. The electron density gradient is nonuniform and the following profile
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is adopted in solving the weight Equation [26]

ne(r) = ne,0c3 exp

(
−c2
c1

tanh
r − c0
c2

)
, (4.4)

d lnne
dr

= − 1

c1

[
1− tanh2 r − c0

c2

]
, (4.5)

where c0 = 0.49123, c1 = 0.298228, c2 = 0.198739, and c3 = 0.521298. In
the original benchmark study, this density profile is used as the EP density
while in our work, we use it as the electron density. The density profile and
its gradients are visualized in Figure 4.16.

Figure 4.16: The density profile for ITPA large aspect ratio case.

We simulate cases with high and low collision frequencies and compare the
results with the local theory. During the simulation, the density profile changes
gradually because of the particle transport due to collisions. At the end of the
simulation, the density profiles are analyzed, as can be seen in Figure 4.17.
For the high collision case, the density change is of the order of 1%, while for
the low collision case, |δn| < 0.4%. This density variation has negligible effects
on the density gradient as given in Equations 4.16 with the chosen coefficients
and thus the particle/energy fluxes and the bootstrap current stay at the same
level after a ramp-up phase until the end of the simulations. The radial profiles
of the particle flux, energy flux, and bootstrap current are also analyzed, as
shown in Figures 4.18-4.19. For the low collision frequency limit, we observe
good agreement between the theoretical calculation and the simulation, as
seen in Figure 4.18. The red lines for the particle flux and energy flux indicate
solutions in the low collisionality limit given by Equations 3.41-3.42, while the
blue lines are in the high collisionality limit given by Equations 3.44-3.45. As
for the bootstrap current, the blue line indicates the low collision limit given
by Equation 3.43, and the red line is given by the analytical formula by Hinton
which takes into account finite collision frequency given in Equation 3.37. We
observe a big difference in the energy and particle flux near the axis for low
collisionality. The reason is that the theoretical results do not apply near the
axis since the theoretical formulae Equations 3.41-3.42 give infinite particle
and energy fluxes for r = 0. The discrepancy between the theory and the
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Figure 4.17: The radial profiles of the density change at the end of the simulation,

where rLFS is the radial coordinate from the axis to the direction of the low field

side.

simulation is also observed in the study of ion transport in previous work [22].
The particle simulation is more powerful in the sense that it also applies near
the axis.

As for the high collisionality case, the results are given in Figure 4.19. For
the particle flux and the energy flux, we have a very good agreement with
the analytical solutions. However, the bootstrap current seems to have about
the same magnitude but not a definite shape, which might be due to the high
noise-to-signal ratio. Increasing the marker number can improve the quality
of the bootstrap current but is not of our interest due to the low magnitude
of the current in the collisional limit.

Figure 4.18: The radial profiles of the particle flux, energy flux, and the bootstrap

current for the low collision frequency case, where ν̄ ≈ 3 · 10−5. The dashed lines

represent the simulation result, while the blue and red lines represent the analytical

solutions.

We also investigate the fluxes and bootstrap current as a function of the colli-
sion frequency as shown in Figure 4.20. The reference radial location was cho-
sen close to where the maximum values of fluxes were reached (r ≈ 0.23), and
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Figure 4.19: The radial profiles of the particle flux, energy flux, and the bootstrap

current for the high collision frequency case, where ν̄ ≈ 3. The dashed lines represent

the simulation result, while the blue and red lines represent the analytical solutions.

the fluxes and the current are compared with the values from the theoretical
radial profile at this reference location. We observe that the bootstrap current
from simulations decreases much faster as collision increases in the plateau
and the collisional regimes than expected from the analytical interpolation so-
lution. However, we observe good agreement for the particle and energy fluxes
with the analytical solutions, in the low (ν∗ < 1) and high (ν∗ > 10) colli-
sionality limits. Furthermore, the plateau (1 < ν∗ < 10) regime is also visible
where the fluxes stay almost constant for different collision frequencies, and
the overall behavior is qualitatively consistent with previous results [12, 21].
For the bootstrap current, the lowest collision frequency case does not produce
the highest current as would be expected. Similar to the Cyclone case, which
we will study in the next section, this is due to the bootstrap current still
increasing slightly when the simulation is finished. Note that in this study
of the dependency on collisionality, the collision frequency varies by a factor
of 105 and the needed minimum simulation time also varies significantly since
several (∼ 10) collisional periods are needed to reach the saturated state of
the fluxes and the current. The lowest collisional case is the most expensive
one in order to observe reasonable results.
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Figure 4.20: The maximum value of the particle flux, energy flux, and the boot-

strap current for different values of collision frequency, taken at radial location

r = 0.23. The blue lines represent the simulation result, while the green and red

lines represent the analytical solutions.
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4.4 Electron transport results for the moder-

ate aspect ratio case

In addition to the large aspect ratio case (a/R0 = 1/10) in the previous section,
in this section, we study the electron transport for the moderate aspect ratio
case featured by a/R0 = 0.36. The details of the magnetic equilibrium and
the density profile are listed in the reference [24] and the main parameters
are briefly summarized as follows. The major radius and the minor radius are
R0 = 1.67 m and a = 0.6012 m, respectively. In generating the EQDSK file as
the input of the magnetic equilibrium, the q̄ profile in Equation 4.2 is adopted
with

q̄(rc) = 1.41 ,
r

q̄

dq̄

dr
(rc) = 0.8369 , (4.6)

where rc = 0.5a. The safety factor profile is shown in Figure 4.21.

Figure 4.21: The q profiles (left) and poloidal magnetic flux map (right) of the

cyclone case at moderate aspect ratio.

The radial profile of the density and its gradient are given analytically as
follows [24],

n(r) = exp

{
−κnWn

a

Lref
tanh

(
r − rc
WAa

)}
; (4.7)

d lnn

dr
= − 1

Lref
κn cosh

−2

(
r − rc
WAa

)
; (4.8)

where Lref = R0, Wn = 0.3, κn = 2.23. The density profile and its derivative
used as the inputs of the simulations are shown in Figure 4.22. For the sake
of simplicity, a uniform temperature profile is adopted.

Compared with the ITPA case (R0/a = 10, q ≈ 1.75 at r/a = 0.5) studied
in Chapter 4.3, the aspect ratio of the Cyclone case is smaller (a/R0 = 0.36).
In addition, the safety factor is smaller than that of the ITPA case in the
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Figure 4.22: The density profiles for the cyclone moderate aspect ratio case.

inner radial region (r < 0.5a) but is larger near the edge. In the theoretical
derivation, the small parameter ρp = (qR0/r)msv⊥/(ZseB) is adopted as the
expansion parameter, where Zs is the charge number, and the subscript ‘s’
indicates species ‘s’. As a result, for different values of q and r/R0, the accu-
racy of the theoretical result can be different, which is more relevant for ion
transport. As ρp is close to or even larger than the characteristic length of the
equilibrium or/and the density/temperature profiles, the traditional neoclas-
sical formulae are not valid and corrections are needed as shown in previous
studies of ion transport [3, 11]. For electron transport, ρp ≪ 1 is usually well
satisfied except if it is very close to the magnetic axis where R0/r → ∞ and
the traditional theoretical formulae can also break down.

In our simulation, we observe changes in the density of the order of 0.01%
in the low collision frequency case, and about 2% in the high collisional case.
We also observe large density changes on the axis, which can be due to the
high density in the center and the enhanced particle density due to finite orbit
width in simulation starting from Maxwellian distributions.

Figure 4.23: The radial profiles of the density change at the end of the simulation.

We again start by analyzing the radial particle flux, energy flux, and bootstrap
current profiles of high and low collision frequency cases, as shown in Figures
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4.24–4.25. For the low collisionality case, the agreement is not as good as that
in the ITPA large aspect ratio case. The reason can be the large aspect ratio
approximation adopted in the analytical formulas and the different treatments
in our code for the poloidal-angle dependent values such as q in calculating
the theoretical fluxes and the current. Specifically, when calculating the theo-
retical values of the fluxes and current, we calculate the theoretical values on
numerous points in one annulus; then the averaged value is calculated with
proper weights and thus the flux surface average value is obtained using the
Monte-Carlo integration. This method of calculating the flux-surface-averaged
fluxes and current gives us a convenient and practical way of calculating the
fluxes and current for shaped tokamak geometry, as we also adopted for the
ASDEX-Upgrade case in the next section. For the high collision frequency
case, the agreement is better closer to the axis, which is also expected as the
aspect ratio is larger. The bootstrap current is larger than the analytical solu-
tion and has a somewhat different shape for high collisions. The reason can be
the approximation in the interpolation formula Equation 3.37, which is derived
to match the results at the low and high collision regime. Indeed, theoretically,
the discrepancies between the transition formula and the formulae at the low
and high collisions are also observed theoretically [12], as shown in Figure 2.5.
In the theoretical solutions, the interpolation formula is obtained by fitting the
analytical results in the banana-plateau and plateau-collisional regimes, hence
our simulation result is expected to be more exact than the analytical solution
close to the plateau regime.

Figure 4.24: The radial profiles of the particle flux, energy flux, and the bootstrap

current for the low collision frequency case, where ν̄ ≈ 3 · 10−3.

Analyzing how fluxes change with different collision frequencies, we take the
radial location close to the maximum value of the fluxes (r = 0.21), which in
this case is also a larger aspect ratio case. We observe good agreement with the
analytical results for the particle and energy fluxes, as shown in Figure 4.26.
The bootstrap current from the simulation follows the interpolation formula
(red line) well. For ν∗ > 102, the discrepancy between the simulation and the
interpolation formula is larger and it can be due to the high noise level in the
simulations. In future investigations this case can be re-run with larger particle
number. However, the current simulation uses 14 hours of computation time on
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Figure 4.25: The radial profiles of the particle flux, energy flux, and the bootstrap

current for the high collision frequency case, where ν̄ ≈ 3 · 102.

4 nodes with each node containing two Intel(R) Xeon(R) Gold 6130 processors
(16 cores per processor, 2.10GHz, 22MB Cache), as the bootstrap current is
small in the high collision frequency limit further computationally intensive
simulations were not run. Both the simulation results and the theoretical
interpolation formula results are lower than the collisionless approximation and
have the expected behavior of decreased value when the collision frequency is
increasing.

Figure 4.26: The values of the particle flux, energy flux, and the bootstrap current

for rLFS = 0.21 and different values of collision frequency. The blue lines represent

the simulation result, while the green and red lines represent the analytical solutions.
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4.5 Electron transport results for the ASDEX-

Upgrade case

In this section, a realistic geometry for a Tokamak plasmas is used. The
ASDEX Upgrade (AUG) case with shot number 34924 at 3.600 s is chosen as
adopted by the previous work for the development of the TRIMEG code for the
studies of the ion temperature gradient mode [24]. This is a typical discharge
for the study of energetic particles and turbulence physics [18]. The EQDSK
file is obtained from experimental data. The q profile and the poloidal magnetic
flux function are shown in Fig. 4.27. In the simulation, we use the experimental
equilibrium but the analytical density and temperature profiles in Equation
4.7, with the radial coordinate replaced with ρpol =

√
(ψ − ψ0)/(ψb − ψ0),

where the subscript 0 and b indicate the values at the magnetic axis and the
last closed surface, respectively. In this work, we focus on testing the capability
of the code in treating realistic geometry with minimum technical complexity.
The density and the temperature profiles are shown in Fig. 4.28.

Figure 4.27: The q profiles (left) and poloidal magnetic flux map (right) of the

AUG case.

Figure 4.28: The density profiles for the AUG case.

As in previous chapters, we first look at the density changes due to low and
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high collision frequencies as shown in Figure 4.29. We observe much lower
density changes than in the previous cases. The density change due to high
collision frequency is 0.6%, while in the low collision frequency case, it is almost
negligible.

Figure 4.29: The radial profiles of the density change at the end of the simulation,

where rLFS indicates the radial coordinate from the axis to the low field side.

Looking at the radial profile for the low collision case given in Figure 4.30,
we observe agreement with the theory. However, we also see issues with the
simulation, where some values have become non-physical. For the low collision
simulations, particle trajectories are calculated in a longer time scale than that
in the collisional case, which requires dedicated treatment of the particle loss-
refilling at the boundary and the control of numerical exceptions/errors. To
make conclusions, the treatment of the geometry needs further investigation
for long-time simulation in the low collision regime. As for the high collision
frequency case, given in Figure 4.31, the discrepancy between theory and sim-
ulation is larger than that in the ITPA and Cyclone cases. In addition to the
reason we discussed in the Cyclone case, for the AUG case, the magnetic flux
surfaces are not circular but are strongly shaped. The theoretical formulae of
fluxes and bootstrap current were derived for the circular magnetic flux sur-
face originally [12] and our scheme of flux surface average of the fluxes and
current is one possible way of an estimate which is more reasonable for circular
magnetic flux surfaces and is for the verification of the implementation of the
code. More accurate theoretical/numerical solutions for shaped tokamak plas-
mas can be found elsewhere [28, 1] and the comparison with our simulation
results is possible but is beyond the scope of this work.

Furthermore, to investigate the dependence on the collision frequency we
picked the radial coordinate where the highest values of fluxes were observed
(rLFS = 0.2), and compared the analytical and simulation results, as shown in
Figure 4.32. The agreement with the theory can still be seen. However, the
agreement for large collision frequencies has gotten worse. Nevertheless, the
trends of the fluxes and bootstrap current follow the theoretical results. More



4.5 Electron transport results for the ASDEX-Upgrade case 61

Figure 4.30: The radial profiles of the particle flux, energy flux, and the bootstrap

current for the low collision case, where ν̄ ≈ 7 · 10−3.

Figure 4.31: The radial profiles of the particle flux, energy flux, and the bootstrap

current for the high collision case, where ν̄ ≈ 7 · 101.

issues need to be studied for understanding the connections and the differ-
ences between the global gyro-kinetic simulation and the local theory, in order
to identify the origin of the differences between the theoretical results and the
simulation results.

Overall, comparing the three cases AUG and Cyclone cases showed most differ-
ences from the theoretical results while ITPA case was closest to the analytical
solutions, as would be expected due to the large aspect ratio limit used during
the derivation of the theoretical values. The AUG case requires further studies
to investigate the limitations introduced by the realistic geometry. The agree-
ment between the bootstrap current and the simulation for the lowest values of
collision frequency could also be improved by increasing the simulation time,
as currently all simulations were running on average for 16-32 hours using the
computational resources described above.
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Figure 4.32: The values of the particle flux, energy flux, and the bootstrap current

for different values of collision frequency at the low field side radius rLFS = 0.2. The

blue lines represent the simulation result, while the green and red lines represent

the analytical solutions.
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Conclusion

The collision-induced neoclassical transport determines the minimum level of
transport in tokamak plasmas. The generation of the neoclassical radial elec-
tric field plays a key role in the instability stabilization and the optimization of
the confinement performance and the neoclassical bootstrap current can pro-
vide drive for instabilities. In this work, the collision operator and the electron
neoclassical transport were studied theoretically and numerically.

Furthermore, the general form of the collision operator has been reviewed. Its
reduction from the general form to the linearized form has been summarized,
with a discussion on the conservation properties. For the electron transport
and bootstrap current generation, we have added the pitch angle scattering
operator to the TRIMEG code. Necessary diagnostic tools are implemented
for the measurement of the particle/energy fluxes and the bootstrap current.
The theoretical formulae are also implemented in the TRIMEG code.

We analyzed the electron transport and bootstrap current generation for three
different cases. We considered a large aspect ratio ITPA case, a moderate
aspect ratio Cyclone case, and a realistic AUG case. We simplified the model,
by only considering the electron species, setting the temperature gradient to
zero, and only taking into account the density gradients.

We started with a local model, which only simulated an annulus and got a
good agreement with previous results from literature [21, 12]. We analyzed the
convergence conditions for the code and made sure the parameters we set were
giving physical results. For the large aspect ratio cases, we have found good
agreement between theory and analytical solutions for the particle flux and the
energy flux, while for the small aspect ratio, the agreement was worse. This was
however expected, as the analytical results were obtained for the large aspect
ratio approximation. For the bootstrap current, the agreement was good for
low collision frequencies but then the magnitude of the current was much lower
than expected from the analytical solutions. As these analytical solutions were
interpolation formulae fitted from the two limits, an exact agreement was not
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expected. However, better verification of the results and the identification of
the limitations of the interpolation formulae require further investigation in a
broader parameter regime.

In realistic AUG geometry, good numerical behaviors such as the convergence
of the radial profiles are observed in bootstrap current and the fluxes in the
collisional regime. Meanwhile, we found limitations in the flux calculations
in the banana regime that need to be verified to have confidence in the re-
sults related to the low collision frequency case. However, regardless of this
limitation, the agreement between the theory and the results was still good,
and for higher collision frequencies, the energy and particle fluxes decreased
in magnitude faster than the analytical solutions as the collision frequency
increased.

The particle simulation of the neoclassical transport with the implementation
of the collision operator provides a robust tool in a broad collisionality regime
and for flexible parameters such as tokamak geometry. Future steps for fur-
ther investigation would be to investigate the limitations related to the AUG
geometry, especially in the banana regime. It also merits more efforts to add
like-particle collision operators to also take into account ions in the simula-
tion. After which, the particle-field coupling must be done, and the study of
the radial electric field would be possible.
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